힙에 데이터 삭제 구현 (Max Heap 예)
- 힙 클래스 구현4 - delete1
- 보통 삭제는 최상단 노드 (root 노드)를 삭제하는 것이 일반적임
- 힙의 용도는 최대값 또는 최소값을 root 노드에 놓아서, 최대값과 최소값을 바로 꺼내 쓸 수 있도록 하는 것임
class Heap:
def __init__(self, data):
self.heap_array = list()
self.heap_array.append(None)
self.heap_array.append(data)
def pop(self):
if len(self.heap_array) <= 1:
return None
returned_data = self.heap_array[1]
return returned_data
- 힙 클래스 구현4 - delete2
- 상단의 데이터 삭제시, 가장 최하단부 왼쪽에 위치한 노드 (일반적으로 가장 마지막에 추가한 노드) 를 root 노드로 이동
- root 노드의 값이 child node 보다 작을 경우, root 노드의 child node 중 가장 큰 값을 가진 노드와 root 노드 위치를 바꿔주는 작업을 반복함 (swap)
- 특정 노드의 관련 노드 위치 알아내기
- 부모 노드 인덱스 번호 (parent node's index) = 자식 노드 인덱스 번호 (child node's index) // 2
- 왼쪽 자식 노드 인덱스 번호 (left child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2
- 오른쪽 자식 노드 인덱스 번호 (right child node's index) = 부모 노드 인덱스 번호 (parent node's index) * 2 + 1
class Heap:
def __init__(self, data):
self.heap_array = list()
self.heap_array.append(None)
self.heap_array.append(data)
def move_down(self, popped_idx):
left_child_popped_idx = popped_idx * 2
right_child_popped_idx = popped_idx * 2 + 1
if left_child_popped_idx >= len(self.heap_array):
return False
elif right_child_popped_idx >= len(self.heap_array):
if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
return True
else:
return False
else:
if self.heap_array[left_child_popped_idx] > self.heap_array[right_child_popped_idx]:
if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
return True
else:
return False
else:
if self.heap_array[popped_idx] < self.heap_array[right_child_popped_idx]:
return True
else:
return False
def pop(self):
if len(self.heap_array) <= 1:
return None
returned_data = self.heap_array[1]
self.heap_array[1] = self.heap_array[-1]
del self.heap_array[-1]
popped_idx = 1
while self.move_down(popped_idx):
left_child_popped_idx = popped_idx * 2
right_child_popped_idx = popped_idx * 2 + 1
if right_child_popped_idx >= len(self.heap_array):
if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
self.heap_array[popped_idx], self.heap_array[left_child_popped_idx] = self.heap_array[left_child_popped_idx], self.heap_array[popped_idx]
popped_idx = left_child_popped_idx
else:
if self.heap_array[left_child_popped_idx] > self.heap_array[right_child_popped_idx]:
if self.heap_array[popped_idx] < self.heap_array[left_child_popped_idx]:
self.heap_array[popped_idx], self.heap_array[left_child_popped_idx] = self.heap_array[left_child_popped_idx], self.heap_array[popped_idx]
popped_idx = left_child_popped_idx
else:
if self.heap_array[popped_idx] < self.heap_array[right_child_popped_idx]:
self.heap_array[popped_idx], self.heap_array[right_child_popped_idx] = self.heap_array[right_child_popped_idx], self.heap_array[popped_idx]
popped_idx = right_child_popped_idx
return returned_data
def move_up(self, inserted_idx):
if inserted_idx <= 1:
return False
parent_idx = inserted_idx // 2
if self.heap_array[inserted_idx] > self.heap_array[parent_idx]:
return True
else:
return False
def insert(self, data):
if len(self.heap_array) == 1:
self.heap_array.append(data)
return True
self.heap_array.append(data)
inserted_idx = len(self.heap_array) - 1
while self.move_up(inserted_idx):
parent_idx = inserted_idx // 2
self.heap_array[inserted_idx], self.heap_array[parent_idx] = self.heap_array[parent_idx], self.heap_array[inserted_idx]
inserted_idx = parent_idx
return True
. 힙 (Heap) 시간 복잡도
- depth (트리의 높이) 를 h라고 표기한다면,
- n개의 노드를 가지는 heap 에 데이터 삽입 또는 삭제시, 최악의 경우 root 노드에서 leaf 노드까지 비교해야 하므로 ℎ=𝑙𝑜𝑔2𝑛h=log2n 에 가까우므로, 시간 복잡도는 𝑂(𝑙𝑜𝑔𝑛)O(logn)
- 참고: 빅오 표기법에서 𝑙𝑜𝑔𝑛logn 에서의 log의 밑은 10이 아니라, 2입니다.
- 한번 실행시마다, 50%의 실행할 수도 있는 명령을 제거한다는 의미. 즉 50%의 실행시간을 단축시킬 수 있다는 것을 의미함